Pd-PROMOTED VINYLIC HYDROGEN SUBSTITUTION OF ALKENE AND α CARBONYLATED

ALKFNE BY LITHIUM AND MAGNESIUM ORGANOCUPRATES .

Ngoc-Tuyet LUONG-THI and Henriette RIVIERE Groupe de Recherche n° 12 - CNRS 2 \ddot{a} 8, Rue Henry Dunant - 94320 Thiais - France

SUMMARY : In the presence of PdCl₂, LiCl and K_2CO_3 , vinylic hydrogen substitution of styrene and acrylic ester, in MeCN and MeCN - HMPA respectively , has been successfully performed using lithium and magnesium organocuprates .

We have recently described the arylation of styrene by Grignard reagents in the presence of PdCl₂¹. We now wish to report the reactivity of lithium and magnesium organocuprates in the Pd-promoted vinylic hydrogen substitution of alkenes . This study has been undertaken as the well-known unreactivity of these reagents towards carbonyl functions would allow to consider their use in reactions involving carbonylated alkenes .

Results obtained with styrene and n-butyl acrylic ester are reported in this paper. As shown in Table 1 , using acetonitrile as solvent , good yields of trans-stilbene were obtained by treatment of styrene with lithium or magnesium diphenylcuprate in the presence of palladium chloride , lithium chloride and potassium carbonate for lh at room temperature under nitrogen atmosphere (Run no. 3 and 7) .

Unlike the corresponding Grignard reaction $^{\mathrm{l}}$, tri-n-butylamine proved ineffective as a base in these reactions even under stoichiometric conditions (Table 1 , Run no. 2) . This might be attributed to a competitive deactivating complexation of the organocuprate reagent by the amine .

With magnesium organocuprate , the phenylation of styrene could be performed under catalytic conditions, $CuCl₂$ being used as co-catalyst (Table 1, Run no. 6).

These reactions very probably proceed via a mechanism similar to that proposed for organomercury compounds 2 involving organopalladium formation from organocuprate and palladium salt 3 and alkene insertion followed by β elimination.

4657

Run no.	Reagent Ph_2 CuM b)	Molar ratio x $(Ph_2CuM / PdCl_2)$	Solvent	Base	trans PhCH=CH-Ph yield (7) c)
ł	Ph_2CuMgX	2	CH_2Cl_2 ^{d)}	$NBu_{\mathbf{q}}^{\mathbf{n}}$	10
$\overline{2}$	Ħ	$\overline{2}$	$MeCN$ ^{d)}	NBu_{2}^{n}	40
3	$\pmb{\mathfrak{m}}$	1.1	MeCN $^{d)}$	K_2CO_3	100
4	$\mathbf{11}$	10	CH_2Cl_2 ^{e)}	NBu_{3}^{n}	30
5	\mathbf{H}	10	$_{MeCN}$ e)	NBu_{3}^{n}	45
6	\mathbf{H}	10	$MeCN$ ^{e)}	K_2CO_3	620
7	Ph_2 CuLi	$\overline{2}$	$MeCN$ ^{d)}	K_2CO_3	100
8	$\pmb{\mathfrak{r}}$	10	$_{\text{MeCN}}$ e)	K_2CO_3	260

Table 1 : Phenylation of styrene by lithium and magnesium diphenylcuprate a) (room temperature, lh under N_2)

a) Ph₂CuM/PdC1₂/LiC1/PhCH=CH₂/base = x/1/excess/3/excess ; b) (2 PhM + CuI) ; c) based on PdC1₂; d) PdC1₂ \simeq 0.1N ; e) PdC1₂ \simeq 0.01N .

Lithium and magnesium organocuprates can thus be used as arylating agents in the Pd-promoted vinylic hydrogen substitution of alkenes . As they are unreactive towards carbonyl functions, these reagents should be more suitable than the corresponding organomagnesium compounds in reactions involving alkenes having such a function in their structure. The most complicated case is considered herein, i.e. when the carbonyl function is in α position of the double bond . Indeed , with such a substrate, the conjugate addition (path a) might be another competing reaction with the vinylic hydrogen substitution (path b) (Scheme).

Results obtained with n-butyl acrylic ester are shown in Table 2 . In acetonitrile, poor yields of the unsaturated ester 2 were obtained, the major product being the saturated ester 1 (Run no. 1 and 3) . This might suggest that under these conditions the conjugate addition is too fast to allow the vinylic hydrogen substitution to proceed . An increased yield of the unsaturated ester 2 might be expected if path a) can be made less favourable . It has been reported that the conjugate addition of lithium organocuprate to α -enones can be inhibited by 12-crown-4 5 or by HMPA 6 .

Table 2 : Pd-promoted vinylic hydrogen substitution of CH₂=CHCOOBu by lithium or magnesium diphenylcuprate α' . (0°C ,20h under N₂).

a) Ph₂CuM /PdC1₂/LiC1/CH₃CHCOOBu/K₂C0₃ = 4/1/1/3/excess ; b) based on PdC1₂ ; c) MeCN/HMPA = $2/1$; d) Ph₂CuM /complexing agent = $1/5$.

Results showed that in the presence of 12-crown-4 or cryptand $[2.1.1]$, low yields of <u>I</u> and <u>2</u> were obtained , i.e. both routes a) and b) were inhibited . Hovewer when HMPA was added as co-solvent , good.yields of 2 were obtained particularly when the reagent **was** lithium diphenylcuprate (Table 2, Run no. 2 and 6) 7 .

In conclusion , lithium and magnesium organocuprates can be good arylating agents for vinylic hydrogen substitution of alkenes . With α carbonylated alkene as substrate , i.e. when competition between *conjugate* addition and vinylic hydrogen substitution exists , the use of HMPA can selectively inhibit the former route and then allows the latter one to take place .

These results provide the first examples of direct reactions of organocuprates with alkenes promoted by palladium chloride .

References and notes

- 1. N.T. LUONG-THI and H. RIVIERE, J.C.S. Chem. Comm., 918 (1978).
- 2. R.F. HECK, J. Amer. Chem. Soc., 90, 5526 (1968).
- 3. (COD)Pd(CH₃)₂ has been isolated from Li(CH₃)₂Cu and (COD)PdCl₂⁴
- 4. M. RUDLER-CHAUVIN and H. RUDLER, J. Organometal. Chem., 134, 115 (1977).
- 5. C. OUANNES, G. DRRSSAIRE and Y. LANGLOIS , Tetrahedron Letters, 815 (1977) .
- 6. H.O. HOUSE and J.M. WILKINS, J. Org. Chem., 43, 2443 (1978); H.O. HOUSE and T.V. LEE, J. Org. Chem., 43, 4369 (1978).
- 7. With phenylmagnesium bromide as reagent, very poor yields of 2 (≤ 5 %) were obtained in the same conditions .

(Received In France 27 July **1979)**